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Ostreopsis cfr. ovata toxicity was estimated through acute bioassays using four crustacean species
(Artemia franciscana, Tigriopus fulvus, Corophium insidiosum and Sphaeroma serratum). The epiphytic
dinoflagellate showed significant toxicity towards all tested crustaceans, which have usually exhibited the
highest mortalities with increasing the dinoflagellate cell concentrations. Furthermore, our results evi-
denced a higher sensitivity of A. franciscana larvae to Ostreopsis, compared with the other species. The
results of our bioassays highlighted the usefulness of employing a base-set of different species rather than
one derived from a single species, in order to obtain more reliable information on the algal toxicity.
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1. Introduction

In recent years, recurrent human health problems related to toxins produced by some species of
microalgae have led to investigations into the occurrence of harmful species and to the devel-
opment of fast, accurate and easy methodologies for toxin detection. Among the harmful algal
species are epiphytic dinoflagellates belonging to the genera Ostreopsis, which have expanded
their distribution during the last decade, and produce water-soluble toxins [1–4].

The genus Ostreopsis Schmidt (1901) belongs to the family Ostreopsidaceae Lindeman (1928)
and has a worldwide distribution [5], including the Mediterranean Sea [5–12]. The origins of this
genus are tropical and subtropical regions, where it usually forms assemblages with other benthic
organisms [13]. In the Mediterranean Sea, the genus Ostreopsis includes species that are toxin
producers and are now the object of study by many researchers. The increase in the incidence of
problems associated with harmful and toxic microalgae suggests the need to establish adequate
surveillance programmes, which are currently expensive and time-consuming. Thus, knowledge
of the effects of these toxins on aquatic organisms is important for the establishment of water
quality criteria.

Multiple detection methods, both biological and chemical, have been developed for the paly-
toxins and related compounds, and biosensors are also in development. However, none of these
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118 E. Prato et al.

methods has been validated [14–16]. If sensitive chemical techniques that provide low (parts per
billion) detection limits are needed, new inexpensive methods with high throughput would be
preferred for regulatory monitoring of algal toxins. Compared with the above-mentioned meth-
ods, bioassays usually have the advantages of being simple, quick, sensitive and inexpensive.
Indeed, the use of test organisms that can be easily maintained for laboratory studies all year
around may prove a valuable contribution to scientific advances in detecting harmful algae toxic-
ity [17]. However, the EU Water Framework Directive (2000/60/EC) [18] and the current Italian
Legislation D. Lgs. 152/99 [19] require the use of ecotoxicological tests to assess water quality.

Previous studies have shown that each species and test procedure has its own sensitivity pattern
to toxicants [20], and no single species is sensitive to all chemicals [21,22]. Accordingly, the use
of test batteries [22–25] is becoming more common.

These methods require the simultaneous use of different test species, representing various
habitats and sensitivity to toxicants, taking into account that a single testing species may over-
or underestimate the potential toxicity of a particular substance [20,25–27]. Crustaceans are
usually preferred in ecotoxicology for their ease of handling in the laboratory and because their
toxic response is well documented and likely to be representative of harmful effects produced by
different toxicants [24,28,29]. The aim of this study was to detect the acute toxicity of an Ionian
strain of Ostreopsis cfr. ovata on biota, by using four test crustacean species characterised by
different habitats and life cycles. The chosen crustaceans were the nauplii of Artemia franciscana
Kellogg, 1906 (Anostraca) and Tigriopus fulvus Fischer, 1860 (Harpacticoida), and juveniles of
Corophium insidiosum Crawford, 1937 (Amphipoda) and Sphaeroma serratum Fabricius, 1787
(Isopoda).

Taking into account that Ostreopsis cfr. ovata has been detected in the Gulf of Taranto [9], this
study was carried out to establish baseline data and assess the potential toxicity of this microalga
for the aquatic environment.

2. Materials and methods

2.1. Ostreopsis cfr. ovata sampling and growth in culture

Cells of O. cfr. ovata were isolated from macroalgae collected along the coastline of the Gulf
of Taranto (Mediterranean Sea). In the laboratory, individual cells were subsequently dispensed
separately into tissue culture plates (16-well polystyrene plates) containing f/2 media [30], pre-
pared in filtered, sterile seawater collected from the area in which the cells had been previously
isolated. Clonal cultures were established and grown at 20 ± 2 ◦C with a 14L:10D photoperiod
and illumination at ∼100 μmol photons·m−2·s−1. At the beginning of each experiment, the tested
alga was diluted to the desired densities in the tubes.

2.2. Crustacean test species

Artemia franciscana, a non-autochtonous species, commercially available (Artemia Gold Argen-
temia) was used at II–III stage nauplii, according to the standard IRSA ISSN:0392-1425
protocol [31].

Approximately, 1–2 mL of cysts of brine shrimp Artemia salina were incubated in 12 mL
standard artificial seawater (Instant Ocean®) in a Petri dish, at 25 ◦C for 24 h. The hatched larvae
(instar 1) were transferred to a new Petri dish with fresh medium and incubated at 25 ◦C for 24 h.
Forty-eight hours after the start of the incubation, all larvae had moulted to the instar 2–3 stages.
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Chemistry and Ecology 119

Tigriopus fulvus is a meiobenthic, euryaline (2–125 PSU) and eurythermal (0–35 ◦C) copepod
species, widely distributed in the Mediterranean [28,32,33]. In this study, a natural population of
T. fulvus from the Tyrrhenian Sea (Livorno, Italy) was used. The toxicity tests were carried out
using nauplii originating from a synchronised culture (24–48 h) of ovigerous females reared in a
massive culture, according to ISI/FDSI 14669 [34], modified according to Faraponova et al. [28].

The amphipod C. insidiosum is a tube-building species living in brackish and estuarine water
of the infralittoral zone, where it is widely distributed and available in large numbers. This
species feeds on both sediment and suspended particulate matter. Previous studies demonstrated
its tolerance to non-contaminant variables (biotic and abiotic) and sensitivity to toxicants [35–38].

The isopod S. serratum is recognised as an omnivorous species living in brackish and estuarine
waters of the supra-infralittoral zone [29,39–41]. It eats benthic microalgae, filamentous algae,
macroalgae, detritus, small invertebrates and even its conspecifics.

Both C. insidiosum and S. serratum were collected from an unpolluted site, away from sources
of contamination, along an intertidal area of the Second Inlet of Mar Piccolo. Small quantities of
sediment were sieved through a 0.5-mm mesh sieve to select the recommended size of animals
(2–4 mm body length), avoiding mature females and juveniles. Experimental organisms were
acclimated for 3–4 days before the beginning of the tests.

The selection of test species was based on their standardisation and frequent use in toxicity
testing, and reported sensitivity to a wide range of pollutants[21,33,34].

2.3. Bioassay and exposure conditions

For each test species, testing was performed in two stages. A preliminary range finding test was
conducted to determine the range of concentrations to be used during the definitive test. In fact,
the toxicity levels of the crustaceans tested is actually unknown. Eleven different concentrations
of O. cfr. ovata and one control were performed in two replicates.

In the definitive and last test, a new series of cell concentrations was prepared, based on results
obtained in the preliminary tests. All definitive testing was conducted at least four times.

Six microalgae concentrations (cell·mL−1), prepared with artificial seawater, and one control
were performed in three replicates.

In particular, the tests with A. franciscana and T. fulvus were carried out by exposing 10 nauplii
at six concentrations of O. cfr. ovata (from 2 to 12 cells·mL−1 and from 2.5 to 80 cell·mL−1,
respectively) in 10 mL artificial seawater (Instant Ocean®). The tests were carried out in con-
ventional 12-multiwell testing plates to ensure a large water surface and enough air, the plate
was covered and placed in incubator at 20 ± 1◦C in continuous dark. During the exposure period
(48 h for A. franciscana and 96 h for T. fulvus), the nauplii were not fed and the water was not
renewed. Mortality of nauplii was noticed as the endpoint. All tests were accompanied by a neg-
ative control which measured the response of the organisms in the absence of O. cfr. ovata and
under the best possible exposure conditions. The negative control consisted of cultured cells of the
non-toxic species Tetraselmis suecica at the highest concentration of 2 × 104 cell·mL−1. For each
concentration and control, three replicates were carried out. At the end of the tests, the multiwell
plate was placed under a microscope and the total numbers of dead nauplii were counted for each
concentration to determine the mortality rate. The nauplii were considered dead if no movement
of the appendages was observed within 10 s.

The test experiment with C. insidiosum and S. serratum was carried out in a 500-mL glass beaker
containing filtered natural seawater. Briefly, 20 individuals (randomly selected) were exposed to
geometric concentrations of Ostreopsis from 2.5 to 40 cell·mL−1 for C. insidiosum and from 10
to 320 cell·mL−1 for S. serratum, plus a control with Tetraselmis suecica [36]. Four replicates of
each Ostreopsis cfr. ovata concentration were carried out. The beakers were kept at a constant
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120 E. Prato et al.

temperature (18 ± 2 ◦C), in continuous dark. No food was added to the test chambers and aeration
was supplied without disturbing the animals, maintaining the dissolved oxygen levels >70% of
air saturation. At the end of the test (96 h), the survivors were counted, apparently dead individuals
were considered living if movement was exhibited after gentle stimulation, missing organisms
were considered dead.

Concurrently with the acute tests with O. cfr. ovata, a positive control was performed as quality
control test. This determines the sensitivity of the animals when exposed to a single reference
toxicant under repeatable conditions and can be employed to verify whether the sensitivity of the
adult animals is consistent among experiments. The positive control consisted of a water-only
exposure to copper chloride. Animals for the controls were selected from the same population as
the test animals.

2.4. Statistical data analysis

In order to assess the crustaceans’ sensitivity to CuCl2 and Ostreopsis cfr. ovata, the mean lethal
concentration 50 (LC50) values with associated 95% confidence limits were determined with a
Trimmed Spearman–Karber [42]. The tests were considered valid if the percentage mortality in
the negative control with Tetraselmis suecica did not exceed 10% [43,44] and if the calculated
LC50 obtained in the quality control with the reference toxicant (copper chloride) was <15%. Test
results that were significantly different from negative controls (ANOVA; P < 0.05) indicated that
O. cfr. ovata was toxic.

3. Results

Mean percentage survival in the negative controls was>85% in each test, meeting the acceptability
criteria established for the tests with these species.

Concerning the response to the reference contaminant copper chloride, the crustaceans
used showed the following LC50 values: 14.5 (7.9–16.3) mg·L−1 for A. franciscana, 0.14 ±
0.03 mg·L−1 for T. fulvus, 1.06 ± 0.17 mg·L−1 for C. insidiosum and 5.35 ± 0.44 mg·L−1 for
S. serratum. Mean LC50 values and their 95% confidence limits for each test species toward O.
cfr. ovata are summarised in Table 1.

As regards the acute toxicity test, species exhibited the highest mortalities with the increase in
the Ostreopsis cell concentration (Figure 1). The results showed that A. franciscana larvae are

Table 1. Results of O. ovata acute toxicity test on A. franciscana, T. fulvus, C. insidiosum and S. serratum.

LC50 Confidence LC50 mean
Test species Test no. (cell·mL−1) limits value (cell·mL−1) SD

A. franciscana 1 1.02 0.42–2.47 1.63 0.54
2 1.81 0.92–3.56
3 2.06 1.02–4.15

T. fulvus 1 10.03 6.88–14.63 10.11 0.96
2 9.19 5.68–13.58
3 11.11 7.85–16.37

C. insidiosum 1 12.45 8.56–15.46 11.81 0.73
2 11.01 7.88–14.42
3 11.97 6.85–15.43

S. serratum 1 219.79 127.03–380.30 214.81 4.36
3 211.65 137.90–324.85
3 213.01 125.51–350.40
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Figure 1. Percentage mortality (%) obtained during the exposure of the tested crustaceans to different concentrations
of Ostreopsis cfr. ovata (cell·mL−1).

more sensitive to Ostreopsis cfr. ovata than the other crustaceans tested (ANOVA; P < 0.05). By
contrast, S. serratum appeared to be the most tolerant crustacean species towards the Ostreopsis
cells. T. fulvus and C. insidiosum showed similar sensitivity to O. cfr. ovata (ANOVA; P < 0.05)
with mean LC50 values of 10.11 ± 0.96 and 11.81 ± 0.73 cell·mL−1, respectively.
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122 E. Prato et al.

Statistical analysis showed that for each test species there were significant differences between
the dinoflagellate cell concentrations and controls, therefore the Ionian strain of Ostreopis cfr.
ovata can be classified as a toxic species (ANOVA; P < 0.05). T. fulvus and C. insidiosum showed
similar sensitivity to O. ovata (ANOVA; P < 0.05) with mean LC50 values of 10.11 ± 0.96
and 11.81 ± 0.73 cell·mL−1, respectively. Statistical analysis also confirmed the toxicity of the
dinoflagellate for these crustaceans (ANOVA; P < 0.05).

4. Discussion

Ostreopsis species are producers of palytoxins and palytoxin analogues [3,45,46], which are
among the most potent natural non-protein compounds known, exhibiting extreme toxicity in
mammals [47].

In tropical and subtropical regions, intoxication due to palytoxin is characterised by very severe
symptoms. Several cases of death in humans have been recorded in the Philippines and Singapore
after the ingestion of fish, crabs and other seafood contaminated by palytoxin [48]. In fact, paly-
toxin in these regions does not show any negative effect on marine organisms such as in crabs,
various fish and a sea anemone [3,49–54], which are consumed, resulting in numerous cases of
human poisoning and death. Recently, in Italian waters (Tyrrhenian, Ligurian and South Adriatic
Seas), summer blooms of these species have affected tourist health, causing problems such as
rhinorrea, cough, fever, bronchoconstriction with mild dyspnea and wheezing [55]. Furthermore,
the Ostreopsis cfr. ovata blooms in Italian seas have led to alterations in water quality, as well as
the death of benthonic invertebrates [56,57]. The mortality observed in these invertebrates might
be due to the presence of a palytoxin analogue, ovatoxin-a and its analogues [56].

The brine shrimp (Artemia sp.) test is considered to be a useful tool for preliminary assessment
of lethality or toxicity of harmful algae [58]. This test has been previously used for Ostreopsis sia-
mensis strains from New Zealand [59] and for O. ovata strains from the Adriatic and Tyrrhenian
Seas (Mediterranean) [60]. In this study, the tested crustaceans evidenced a high lethal effect.
Therefore, they can be considered as good candidates to detect Ostreopsis toxicity. In addition,
they highlighted the usefulness of employing a base-set of different species rather than a single
species in ecotoxicological tests, in order to obtain more reliable information for the evaluation of
toxicity and potential hazards due to the release of a specific compound in the marine environment.
The results evidenced high sensitivity of A. franciscana towards Ostreopsis cells, in accordaqnce
with results obtained by Guerrini et al. [60]. Also T. fulvus and C. insidiosum showed low LC50

values, which make them good and convenient test species to detect the toxicity of Ostreopsis.
The acute toxicity test with S. serratum was lower than that of the other crustaceans utilised, in
fact it showed higher LC50 values. But this crustacean showed symptoms of toxic effects such as
aggressiveness and cannibalism, not observed in controls or with the use of chemical toxicants
[36]. The resistance of S. serratum might be associated with the feeding habits of the species,
which usually fed on benthic macroalgae and sediments, natural habitats of Ostreopsis. Although
we do not know when Ostreopsis cfr. ovata became established in Ionian waters, we can hypoth-
esise that over the years, S. serratum might have developed a defence mechanism towards this
toxic microalga.

5. Conclusions

These results lead us to think that the application of crustaceans in routine monitoring will help
us to better understand the possible effects of Ostreopsis, on both marine life and environment.
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Chemistry and Ecology 123

Such an ecotoxicological approach will be implemented further in future studies by performing
an assessment of the chronic toxicity of Ostreopsis. In a chronic toxicity test, the organisms will
be exposed to toxicants for a long period of their lifetime, and the possible effects on different
stages of their life cycles (embryonic development, fecundity and growth rates) evaluated.
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